Source code for orion.algo.random

```# -*- coding: utf-8 -*-
"""
:mod:`orion.algo.random` -- Random sampler as optimization algorithm
======================================================================

.. module:: random
:platform: Unix
:synopsis: Draw and deliver samples from prior defined in problem's domain.

"""
import numpy

from orion.algo.base import BaseAlgorithm

[docs]class Random(BaseAlgorithm):
"""Implement a algorithm that samples randomly from the problem's space."""

def __init__(self, space, seed=None):
"""Random sampler takes no other hyperparameter than the problem's space
itself.

:param space: `orion.algo.space.Space` of optimization.
:param seed: Integer seed for the random number generator.
"""
super(Random, self).__init__(space, seed=seed)

[docs]    def seed_rng(self, seed):
"""Seed the state of the random number generator.

:param seed: Integer seed for the random number generator.
"""
self.rng = numpy.random.RandomState(seed)

@property
def state_dict(self):
"""Return a state dict that can be used to reset the state of the algorithm."""
return {'rng_state': self.rng.get_state()}

[docs]    def set_state(self, state_dict):
"""Reset the state of the algorithm based on the given state_dict

:param state_dict: Dictionary representing state of an algorithm
"""
self.seed_rng(0)
self.rng.set_state(state_dict['rng_state'])

[docs]    def suggest(self, num=1):
"""Suggest a `num` of new sets of parameters. Randomly draw samples
from the import space and return them.

:param num: how many sets to be suggested.

.. note:: New parameters must be compliant with the problem's domain
`orion.algo.space.Space`.
"""
return self.space.sample(num, seed=tuple(self.rng.randint(0, 1000000, size=3)))

[docs]    def observe(self, points, results):
"""Observe evaluation `results` corresponding to list of `points` in
space.

A simple random sampler though does not take anything into account.
"""
pass
```